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ABSTRACT
Background: Trimethylamine N-oxide (TMAO), a compound
derived from diet and metabolism by the gut microbiome, has been
associated with several chronic diseases, although the mechanisms
of action are not well understood and few human studies have
investigated microbes involved in its production.
Objectives: Our study aims were 1) to investigate associations of
TMAO and its precursors (choline, carnitine, and betaine) with
inflammatory and cardiometabolic risk biomarkers; and 2) to identify
fecal microbiome profiles associated with TMAO.
Methods: We conducted a cross-sectional analysis using data
collected from 1653 participants (826 men and 827 women, aged
60–77 y) in the Multiethnic Cohort Study. Plasma concentrations
of TMAO and its precursors were measured by LC-tandem MS.
We also analyzed fasting blood for markers of inflammation,
glucose and insulin, cholesterol, and triglycerides (TGs), and
further measured blood pressure. Fecal microbiome composition
was evaluated by sequencing the 16S ribosomal RNA gene V1–
V3 region. Associations of TMAO and its precursors with disease
risk biomarkers were assessed by multivariable linear regression,
whereas associations between TMAO and the fecal microbiome
were assessed by permutational multivariate ANOVA and hurdle
regression models using the negative binomial distribution.
Results: Median (IQR) concentration of plasma TMAO was 3.05
μmol/L (2.10–4.60 μmol/L). Higher concentrations of TMAO and
carnitine, and lower concentrations of betaine, were associated with
greater insulin resistance (all P < 0.02). Choline was associated
with higher systolic blood pressure, TGs, lipopolysaccharide-binding
protein, and lower HDL cholesterol (P ranging from <0.001 to
0.03), reflecting an adverse cardiometabolic risk profile. TMAO was
associated with abundance of 13 genera (false discovery rate < 0.05),
including Prevotella, Mitsuokella, Fusobacterium, Desulfovibrio,
and bacteria belonging to the families Ruminococcaceae and
Lachnospiraceae, as well as the methanogen Methanobrevibacter
smithii.

Conclusions: Plasma TMAO concentrations were associated with a
number of trimethylamine-producing bacterial taxa, and, along with
its precursors, may contribute to inflammatory and cardiometabolic
risk pathways. Am J Clin Nutr 2020;111:1226–1234.
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Introduction
There is an increasing recognition of the role of gut

microbiome–derived metabolites in disease etiology. The com-
pound trimethylamine N-oxide (TMAO) has been found to
be associated with several chronic diseases, including cardio-
vascular disease (CVD) (1), colorectal cancer (2), diabetes
(3–5), and chronic kidney disease (6–8). Although earlier work
has shown involvement of TMAO in atherogenic processes (9),
the range of different diseases suggests other mechanisms may
be involved. Growing experimental evidence in animal models
demonstrates a contribution of TMAO to inflammation (10) and
metabolic dysfunction (11), highlighting the need for additional
epidemiologic research in this area.

TMAO is obtained from the diet, both directly from foods
such as fish and shellfish (12), as well as through the microbial
metabolism of choline, carnitine, and betaine to trimethylamine
(TMA) (13–15), which is oxidized to TMAO by hepatic flavin-
containing monooxygenases (FMOs), particularly FMO3 (16).
Several bacterial species involved in TMA production have been
identified by culture-based methods, and include those belonging
to the phyla Firmicutes, Proteobacteria, and Actinobacteria (15,
17–19). Newer bioinformatic approaches have been utilized to
identify bacterial genes involved in these conversions, including
cutC/D from the choline utilization (cut) gene cluster and the
two-component Rieske-type oxygenase/reductase cntA/B, which
metabolize choline and carnitine, respectively (20, 21). The
ability to reduce TMA by other microbes, namely methanogenic
archaea (22), adds yet another layer of complexity in determining
circulating TMAO concentrations. Although many of these previ-
ous studies indicated which bacteria have the potential to produce
TMA in the gut environment, it is less clear whether these will
also be associated with TMAO in population-based studies.

In this study, we used data from a subset of the Multiethnic
Cohort (MEC) Study to address 2 aims: 1) to investigate associa-
tions of TMAO and its precursors (choline, carnitine, and betaine)
with inflammatory and cardiometabolic biomarkers to better un-
derstand potential disease mechanisms of these compounds; and
2) to identify fecal microbiome profiles associated with TMAO.

Methods

Study participants

The MEC is an ongoing prospective cohort study that recruited
215,251 men and women from Hawaii and Los Angeles, CA
between 1993 and 1996 (23). MEC participants were aged 45–
75 y at the time of recruitment and were predominantly from
5 self-reported racial/ethnic groups: African American, Japanese
American, Latino, Native Hawaiian, and white. The current study
includes participants of the MEC-Adiposity Phenotype Study
(MEC-APS), a substudy that recruited 1861 participants from the
MEC to investigate associations between multiomics data and
body fat distribution. MEC-APS participants were selected so
as to have a similar distribution of men and women across the
5 racial/ethnic groups, with stratified sampling based on BMI
(in kg/m2) categories (18.5–21.9, 22.0–24.9, 25.0–26.9, 27.0–
29.9, 30.0-34.9, 35.0–40.0). Additional inclusion and exclusion
criteria for the MEC-APS have been reported in detail previously
(24). Notably, individuals were excluded for current or recent
(<2 y) smoking, insulin or thyroid medication, dialysis, serious
health conditions, and antibiotics use in the last 3 mo, as well

as colonoscopy, chemotherapy, radiation therapy, or significant
weight change (>9 kg) in the last 6 mo.

In the current analysis, we excluded participants that did not
have TMAO and biomarker measures (n = 9), or had missing
data on key covariates (aspirin use, diet, percentage body fat, and
physical activity) (n = 136). Participants were also excluded if
they did not have fecal microbiome measures (n = 63), leaving
1653 available for the current analysis (Supplemental Figure 1).
Carnitine data were available for 1371 of these participants.

Questionnaires

Before the clinic visit, participants filled out a mailed
questionnaire containing items related to demographics, health
and medication history, physical activity, and a quantitative FFQ
(25). Metabolic equivalent of tasks (METs) were calculated
based on the reported average time spent in light, moderate,
and strenuous activity during the past year. Questions related to
usual eating habits of >180 food items during the last year were
included in the FFQ, which has been validated and calibrated
against 24-h dietary recalls within the MEC, and incorporates
many ethnic-specific foods (25). Participants were asked how
often they ate each food item (8 possible responses ranging
from “never or hardly ever” to “2 or more times a day”) and
the usual serving size, which was accompanied by pictures of
3 different portion sizes to assist in estimation. Food groups were
calculated as grams per day based on relevant food items, as
well as portions of mixed dishes. The questionnaire was filled
out by the participant at home and reviewed by study staff
during the clinic visit. For the current analysis, we included
food groups and nutrients that are major sources of TMAO (fish
and shellfish) and its precursors (red and processed meats, eggs,
fiber) (26).

Study clinic visit

At the study clinic visit to the University of Hawaii Cancer
Center (UHCC) or the University of Southern California
(USC), participants had anthropometrics measured, fasting blood
samples drawn, and underwent whole-body DXA and abdominal
MRI scanning. Venous blood was collected after an overnight
fast (>8 h) in two 10-mL heparinized vacutainer tubes and
two 10-mL dry tubes. Blood was processed into components
within 4 h of collection and frozen at −80◦C until analysis at
the UHCC Analytical Biochemistry Shared Resource lab. The
DXA scan (Hologic Discovery A) was performed to measure
total and regional body fat mass (24). DXA image files from
both study sites were centrally analyzed at the University
of California, San Francisco to estimate percentage body
fat.

Systolic (SBP) and diastolic blood pressure (DBP) were
measured in a sitting position after 20 min of rest. Trained
technicians measured blood pressure in the left arm of the
participant using a digital monitor (Omron HEM-907XL). If
the first 2 measurements differed by ≥10 mm Hg, a third
measurement was taken and the closest 2 were averaged.

Blood cardiometabolic biomarker analysis

Serum was analyzed on a Cobas MiraPlus chemistry analyzer
(Roche) for glucose using kits from Randox Laboratories
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(#GL1611) and for high-sensitivity C-reactive protein (hsCRP),
triglycerides (TGs), and total and HDL cholesterol using kits
from Pointe Scientific (C7568, T7532, and H7545). LDL choles-
terol was derived from total cholesterol and HDL cholesterol
among individuals with TGs < 400 mg/dL using the Friedewald
equation (27). ELISAs were used to measure serum insulin (EMD
Millipore EZHI-14K) and plasma lipopolysaccharide-binding
protein (LBP) (Cell Sciences CKH113). The HOMA-IR estimate
was derived from glucose and insulin measurements (28, 29).
Blind duplicate quality control (QC) samples (10% of study
samples) were included at random in each batch and yielded CVs
and intraclass correlation coefficients (ICCs) as follows: glucose:
10% and 90%; hsCRP: 61% and 86%; TGs: 18% and 95%; total
cholesterol: 14% and 72%; HDL cholesterol: 18% and 80%;
insulin: 14% and 96%; and LBP: 19% and 72%, respectively.

Plasma TMAO, choline, carnitine, and betaine analysis

Plasma TMAO, choline, carnitine, and betaine were ana-
lyzed by LC–tandem MS (Surveyor HPLC coupled to a TSQ
Quantum™ mass spectrometer, Thermo Scientific Inc.) after
electrospray ionization (ESI) in positive mode using selected
reaction monitoring modified from published methods (30, 31).
Plasma (0.025 mL) was mixed with 0.01 mL of an aqueous
internal standard solution consisting of choline-(trimethyl-d9)
hydrochloride, betaine-(trimethyl-d9) hydrochloride, l-carnitine-
d3 hydrochloride (all from Sigma), and trimethylamine-d9 N-
oxide (Cambridge Isotopes). Proteins were then precipitated by
the addition of 0.215 mL acetonitrile. After mixing on a vortex
for 5 min and centrifuging at ambient temperature for 5 min at
14,000 × g, 0.01 mL of the clear supernatant was injected onto
a ZIC-c hydrophilic interaction liquid chromatography (HILIC)
column (100 × 2.1 mm, 3 μm, 100 A) with a ZIC-c HILIC
guard column (20 × 2.1 mm; The Nest Group). The mobile
phases consisted of A = MeCN/EtOH/H2O/100 mM NH4OAc,
pH 4.8 (40/6.8/40/13.2, by vol) and B = MeCN/EtOH/H2O/100
mM NH4OAc, pH 4.8 (80/6.8/12.7/0.5, by vol). Linear gradient
elution was performed at a flow rate of 0.2 mL/min as follows
(%A): 0–2.0 min at 20%, 2.0–5.0 min to 100%, 5.0–6.0 min hold
at 100%, 6.0–6.1 min linear gradient to 20%, and equilibrate at
20% for 5.9 min.

The general MS conditions were as follows: source, ESI; ion
polarity, positive; spray voltage, 4500 V; sheath and auxiliary and
ion sweep gas, nitrogen; sheath gas pressure, 45 arbitrary units;
auxiliary gas pressure, 5 arbitrary units; ion sweep gas pressure,
0 arbitrary units; ion transfer capillary temperature, 350◦C; scan
type, high-resolution selected reaction monitoring; collision gas,
argon; collision gas pressure, 1.0 mTorr, source collision induced
dissociation (CID) 5V; scan width, 0.01 u; scan time, 1 s; Q1 peak
width was set at 0.7 u full width at half maximum (FWHM) and
Q3 peak width at 0.70 u FWHM. Mass spectrometric monitoring
was started 0.0 min after sample injection by multiple reaction
monitoring using transitions (only ions measured were listed,
collision energies applied in parentheses) for choline from m/z
104.109 to m/z 45.203 (21 eV), 58.186 (33 eV), and 60.188
(16 eV); for betaine from m/z 118.089 to m/z 42.216 (53 eV),
58.181 (25 eV), and 59.186 (18 eV); for choline trimethyl-d9

from m/z 113.000 to m/z 49.200 (35 eV), 66.203 (32 eV), and
69.235 (17 eV); for betaine trimethyl-d9 from m/z 127.000 to m/z
64.217 (35 eV), 66.219 (30 eV), and 68.209 (20 eV); for TMAO

from m/z 76 to m/z 42.276 (42 eV) and 58.205 (19 eV); for
TMAO-d9 from m/z 85.00 to m/z 46.284 (38 eV), 66.228 (19
eV), and 68.276 (13 eV); for carnitine from m/z 162.098 to m/z
60.176 (16 eV), 85.086 (20 eV), and 103.083 (16 eV); and for
carnitine-d3 from m/z 165.060 to m/z 61.209 (40 eV), 103.128 (16
eV), and 105.154 (18 eV). Final concentrations were obtained
by external calibration. Pooled QC samples (n = 111 replicates
over 2 y) had the following means and CVs: TMAO (1.6 μM),
15.6%; choline (15.0 μM), 15.0%; betaine (43.0 μM), 13.6%;
and carnitine (39.1 μM), 9.6%. Blind duplicate QC samples
embedded at random positions throughout batches yielded
acceptable ICCs: TMAO, 93%; choline, 76%; betaine, 86%; and
carnitine, 73%.

Stool sample collection and fecal microbiome analysis

Participants received a stool collection kit during their clinic
visit. Stool samples were collected at the participants’ home into a
vial containing RNAlater and frozen overnight (32). Participants
were then asked to bring the sample to the UHCC or USC
study center. The UHCC and USC labs stored the samples at
−80◦C until bulk shipments were made every 3 mo to the Fred
Hutchinson Cancer Research Center (Fred Hutch), where they
were stored at −80◦C until processing.

Laboratory and bioinformatic processing procedures have
been described previously (33). Briefly, DNA from stool samples
was extracted at Fred Hutch, amplified for the V1–V3 region of
the 16S ribosomal RNA (rRNA) gene, and shipped to Research
and Testing Laboratory LLC (Lubbock, TX) for sequencing. Gut
microbial composition of stool samples was assessed with 2 ×
300-bp paired-end sequencing on the Illumina MiSeq platform.
QC of sequences and inference of phylogenetic relations
were done using Quantitative Insights Into Microbial Ecology
version 1.8 (34) pipelines. All failed sequence reads and low-
quality sequence ends were filtered. Chimeric and nonbacterial
sequences were also removed. Filtered sequences were grouped
into operational taxonomic units at 97% similarity and aligned for
phylogenetic analysis. α- and β-diversity measures were rarefied
to 9000 sequences per sample.

We also used stool samples to quantify total bacteria and
Methanobrevibacter smithii, the predominant methanogen in
the human gut, as described previously in detail (35). Briefly,
quantification was done using TaqMan real-time PCR (Applied
Biosystems, QuantStudio 5) with primers 8FM and 530R, and
a Bac338 NED-labeled probe for total bacteria; and using PCR
primers directed at archaeal 16S rRNA genes with a fluorescein-
labeled (6-FAM) probe for M. smithii. Standard curves for M.
smithii were generated from DNA extracted from a pure culture
using the same primer probe set. Data were analyzed using
QuantStudio software version 1.2.x (Applied Biosystems) to
quantify the copy numbers of the 16S rRNA gene for total
bacteria and M. smithii.

Statistical analysis

Descriptive statistics of the study population were calculated
for each quartile of plasma TMAO concentration, and com-
parisons across quartiles were done using chi-squared tests for
categorical variables and either ANOVA or Kruskal–Wallis tests
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for continuous variables. The primary outcomes for our first
aim were the inflammatory and cardiometabolic biomarkers,
which were regressed on plasma TMAO, choline, carnitine, and
betaine using multivariable linear regression. Normality was
assessed using histograms and probability plots. Concentrations
of TMAO, choline, carnitine, and betaine, as well as CRP,
HOMA-IR, and TGs, had skewed distributions and were thus
log transformed for all models to improve normality. All linear
regression models were adjusted for the following potential
confounding factors selected a priori: age (continuous), sex,
race-ethnicity (5 groups), physical activity (METs; continuous),
percentage body fat (continuous), and aspirin use (no, previous,
current). For CRP, we also adjusted for the phase in which
samples were analyzed by the laboratory. There was no evidence
of collinearity between the included covariates in the models (all
variance inflation factors <3.0).

For our second aim, we investigated whether TMAO and
its precursors explained variation in fecal microbial community
profiles. To identify associations between plasma TMAO and
the fecal microbiome, we examined overall microbiome com-
munity structure and taxa at the genus level. Both analyses
included adjustment for age, sex, race-ethnicity, physical activity,
percentage body fat, and the 16S rRNA sequencing batch.
The variation in the microbiome explained by TMAO and its
precursors was assessed by permutational multivariate ANOVA
(PERMANOVA) (999 permutations) for both unweighted and
weighted UniFrac distance measures with the “adonis2” function
in the R package “vegan” (36). Marginal effects were calculated
using the “margin” option. We applied hurdle regression with
a negative binomial distribution using the “hurdle” function in
the R package pscl (37) as the primary analysis for genera. The
hurdle model is a 2-component model incorporating a truncated
count component which separately models the positive count data
(i.e., abundance) and a zero hurdle component which models the
zero counts (i.e., presence/absence). For genera that did not have
zero counts, we applied the standard negative binomial model.
Genera were modeled as raw counts and only those present in
≥20% of participants were included in the analysis. In addition
to the aforementioned covariates, we further adjusted for total
sample sequence count to account for sequencing depth. To
assess the relation of TMAO and precursor compounds with
M. smithii, we used hurdle regression models with a negative
binomial distribution adjusted for age, sex, race-ethnicity,
physical activity, percentage body fat, and total bacterial
count.

Statistical tests were 2-sided with significance at P < 0.05.
Adjusted P values were also calculated to correct for the
false discovery rate (FDR) by using the Benjamini–Hochberg
procedure (38). Analyses were conducted in R version 3.4.4 (R
Foundation for Statistical Computing).

Results

Participant characteristics

Plasma TMAO differed by race-ethnicity and participants with
higher TMAO had lower physical activity and were more likely
to be current users of aspirin (Table 1). Higher concentrations
of choline and carnitine were seen in the upper quartiles
of TMAO, with a similar pattern across racial/ethnic groups

(Supplemental Table 1). Dietary intake of several food groups
also differed by TMAO, with greater consumption of fish,
shellfish, and red meat in the higher quartiles of TMAO.

Associations between TMAO compounds and biomarkers

We identified several associations of TMAO, choline, car-
nitine, and betaine with inflammatory and cardiometabolic
biomarkers (Table 2). Plasma carnitine was positively associated
with CRP (β: 0.34, P = 0.04), whereas choline was positively
associated with LBP (β: 1.78, P = 0.03). HOMA-IR was
significantly associated with increased concentrations of TMAO,
carnitine, and betaine, and showed a suggestive trend for choline.
Choline was also inversely associated with HDL cholesterol
(β: −14.30, P < 0.001) and had a suggestive positive trend
with LDL cholesterol (β: 9.52, P = 0.06). Choline (β: 0.13,
P = 0.005), carnitine (β: 0.18, P = 0.001), and betaine (β: −0.17,
P < 0.001) were associated with TGs. Betaine was inversely
associated with DBP (β: −2.15, P = 0.01), whereas choline
was positively associated with SBP (β: 3.96, P = 0.02). A
majority of significant associations (7 of 10) remained significant
after correcting for multiple comparisons. Parameter estimates
were slightly attenuated after further adjustment for total energy
intake and dietary intake of seafood and red and processed meat
(Supplemental Table 2).

TMAO and the fecal microbiome

PERMANOVA analysis showed that TMAO, choline, carni-
tine, and betaine each explained ∼0.1% of the total variation

in the fecal microbiome (Table 3). TMAO (R2 = 0.0009,
P = 0.007) and betaine (R2 = 0.0009, P = 0.012) were
significantly associated with the microbiome for unweighted
UniFrac, and betaine (R2 = 0.0013, P = 0.0049) was associated
with the microbiome for weighted UniFrac.

Out of 161 genera present in the sample of MEC-APS
participants, 141 were present in ≥20% of participants. The
abundance of 13 genera was significantly associated with
plasma TMAO at FDR Q < 0.05 (Table 4). These included
3 Bacteroidetes (Prevotella 7, Prevotella 2, an uncultured
Prevotellaceae); 6 Firmicutes (Mitsuokella, Ruminococcaceae
UCG-011, Ruminococcaceae NK4A214 group, [Ruminococ-
cus] torques group, [Bacteroides] pectinophilus group, Eisen-
bergiella); 3 Proteobacteria (Bilophila, Desulfovibrio, uncultured
Rhodospirillales); and 1 Fusobacteria (Fusobacterium). All but
Ruminococcaceae UCG-011 were positively associated with
TMAO. Among these genera, 3 were also associated with
choline (uncultured Prevotellaceae, Ruminococcaceae UCG-011,
Prevotella 2) and 6 with betaine (uncultured Prevotellaceae,
uncultured Rhodospirillales, [Bacteroides] pectinophilus group,
Fusobacterium, Bilophila, and Prevotella 7) (Supplemental
Table 3).

Abundances of 4 TMAO-associated genera (uncultured Rho-
dospirillales, [Bacteroides] pectinophilus group, Prevotella 2,
and Fusobacterium) were also significantly associated with
HOMA-IR (Supplemental Table 4). No genus in the zero
hurdle model was significantly associated with TMAO after FDR
correction (Supplemental Table 5).
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TABLE 1 Characteristics of 1653 study participants in the Adiposity Phenotype Study by quartiles of TMAO1

TMAO

Quartile 1
(<2.10 μmol/L)

Quartile 2
(2.10–3.05 μmol/L)

Quartile 3
(3.06–4.60 μmol/L)

Quartile 4
(>4.60 μmol/L) P2

n 416 411 414 412
Age, y 69.1 ± 2.8 69.0 ± 2.7 69.2 ± 2.7 69.3 ± 2.7 0.28
Female 220 (52.9) 214 (52.1) 202 (48.8) 191 (46.4) 0.21
Race-ethnicity 0.002

African American 66 (15.9) 71 (17.3) 61 (14.7) 62 (15.0)
Native Hawaiian 68 (16.3) 66 (16.1) 65 (15.7) 69 (16.7)
Japanese American 126 (30.3) 91 (22.1) 92 (22.2) 118 (28.6)
Latino 91 (21.9) 81 (19.7) 74 (17.9) 68 (16.5)
White 65 (15.6) 102 (24.8) 122 (29.5) 95 (23.1)

Cigarette smoking history 0.90
Never 261 (62.7) 250 (60.8) 250 (60.4) 250 (60.7)
Former 155 (37.3) 161 (39.2) 164 (39.6) 162 (39.3)

Physical activity, METs 1.7 ± 0.3 1.7 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 0.03
Body fat, % 33.4 ± 7.7 33.4 ± 7.9 33.1 ± 7.7 33.2 ± 7.7 0.61
Aspirin use <0.001

No 254 (61.1) 225 (54.7) 221 (53.4) 197 (47.8)
Previous 52 (12.5) 53 (12.9) 64 (15.5) 59 (14.3)
Current 110 (26.4) 133 (32.4) 129 (31.2) 156 (37.9)

TMAO precursors, μmol/L
Choline 11.5 [9.9–13.3] 12.2 [10.5–14.1] 12.7 [10.8–14.8] 13.1 [11.0–15.9] <0.001
Betaine 40.0 [31.7–47.7] 40.2 [33.5–49.1] 41.2 [33.5–51.0] 40.3 [31.4–48.8] 0.14
Carnitine 38.8 [33.0–44.5] 38.8 [32.9–43.9] 39.5 [34.4–45.5] 41.0 [35.6–46.9] <0.001
Total energy intake, kcal/d 1648 [1306–2200] 1666 [1248–2159] 1749 [1341–2324] 1728 [1269–2288] 0.26

Dietary intake, g/d
Fish 16.7 [7.4–28.7] 15.8 [7.0–26.9] 17.5 [8.0–32.5] 18.9 [10.0–33.9] 0.006
Shellfish 1.9 [0.7–4.1] 1.5 [0.5–3.7] 2.1 [0.7–4.3] 2.1 [0.7–4.7] 0.02
Unprocessed red meat 21.3 [11.7–38.5] 20.5 [12.0–35.6] 23.4 [12.2–38.6] 23.1 [12.9–39.7] 0.15
Processed red meat 11.0 [5.3–20.6] 11.2 [5.5–19.2] 11.7 [5.2–23.0] 14.0 [7.3–24.4] 0.006
Total red meat 34.0 [19.1–59.1] 34.2 [18.8–56.3] 35.4 [21.3–61.2] 39.3 [22.6–66.1] 0.02
Eggs 17.2 [9.6–33.6] 16.1 [8.4–28.5] 17.6 [8.8–34.2] 16.2 [9.2–28.4] 0.45
Fiber 19.9 [13.8–28.9] 20.3 [14.1–27.8] 21.3 [14.8–29.3] 19.8 [14.0–28.9] 0.36

1Values are n (%), means ± SDs, or medians [IQRs]. MET, metabolic equivalent task; TMAO, trimethylamine N-oxide.
2P values for differences between quintiles calculated using chi-squared tests for categorical variables and either ANOVA or Kruskal–Wallis tests for

continuous variables.

M. smithii was detected in 40.7% of participants and
abundance was inversely associated with TMAO (β: −0.426,
P < 0.001) (Supplemental Table 6). There was no association
for M. smithii with choline, carnitine, or betaine.

Discussion
In the present study, we identified several associations of

TMAO, and its precursors choline, carnitine, and betaine, with
inflammatory and cardiometabolic biomarkers. Notably, we

TABLE 2 Parameter estimates and P values for regression of plasma biomarkers on TMAO, choline, carnitine, and betaine1

TMAO Choline Carnitine Betaine

β (SE) P β (SE) P β (SE) P β (SE) P

CRP 0.02 (0.05) 0.73 0.28 (0.15) 0.06 0.34 (0.17) 0.04 − 0.03 (0.11) 0.81
Lipopolysaccharide-binding protein 0.51 (0.29) 0.08 1.78 (0.81) 0.03 0.92 (0.95) 0.33 1.05 (0.60) 0.08
HOMA-IR 0.08 (0.03) 0.005∗ 0.16 (0.08) 0.06 0.26 (0.10) 0.01∗ − 0.34 (0.06) <0.001∗
HDL cholesterol − 1.34 (0.84) 0.11 − 14.30 (2.34) <0.001∗ − 10.35 (2.62) <0.001∗ 0.27 (1.76) 0.88
LDL cholesterol − 1.35 (1.79) 0.45 9.52 (5.06) 0.06 − 4.75 (6.19) 0.44 0.57 (3.77) 0.88
TGs 0.01 (0.02) 0.46 0.13 (0.05) 0.005∗ 0.18 (0.06) 0.001∗ − 0.17 (0.03) <0.001∗
SBP 0.01 (0.62) 0.98 3.96 (1.74) 0.02 − 1.47 (2.08) 0.48 − 2.33 (1.30) 0.07
DBP − 0.43 (0.38) 0.25 1.04 (1.06) 0.33 − 1.34 (1.26) 0.29 − 2.15 (0.79) 0.01∗

1Associations of TMAO, choline, and betaine with biomarkers were assessed in n = 1653 participants, whereas carnitine and biomarker associations
were assessed in n = 1371 participants. TMAO, choline, carnitine, betaine, CRP, HOMA-IR, and TGs were log transformed. Parameters derived from
multivariable linear regression models adjusted for age, sex, race-ethnicity, physical activity, percentage body fat, and aspirin use. ∗Adjusted P < 0.05 after
correcting for the false discovery rate by the Benjamini–Hochberg procedure. CRP, C-reactive protein; DBP, diastolic blood pressure; SBP, systolic blood
pressure; TG, triglyceride; TMAO, trimethylamine N-oxide.
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TABLE 3 Associations of gut microbiome community structure with
plasma TMAO, choline, carnitine, and betaine in the Adiposity Phenotype
Study1

Unweighted UniFrac Weighted UniFrac

R2 P R2 P

TMAO 0.0009 0.007 0.0008 0.151
Choline 0.0007 0.184 0.0004 0.569
Carnitine 0.0007 0.491 0.0007 0.389
Betaine 0.0009 0.012 0.0013 0.049

1Associations of TMAO, choline, and betaine with biomarkers were
assessed in n = 1653 participants, whereas carnitine and biomarker
associations were assessed in n = 1371 participants. R2 and P values
estimated using permutational multivariate ANOVA. All models adjusted
for age, sex, race-ethnicity, physical activity, percentage body fat, and
laboratory batch. TMAO, trimethylamine N-oxide.

found that choline showed a significant association or suggestive
trend with nearly all markers and indicated risk to adverse
health outcomes, and that TMAO was associated with increased
insulin resistance. We also showed that TMAO was associated
with abundance of several fecal bacterial genera, as well as
M. smithii.

Although the exact effects of TMAO in the human body have
yet to be elucidated, its precursors are known to play critical
roles in health. Carnitine is involved in the oxidation of fatty
acids (39), whereas choline is an essential nutrient necessary
for production of acetylcholine, as well as for phospholipids in
cell membranes (40). Betaine, which can be obtained directly
from the diet as well as by metabolism of choline, serves as a
methyl donor for the conversion of homocysteine to methionine
(41). These compounds may also contribute to cardiometabolic
disease risk. Our results for plasma choline and betaine in
particular are comparable with previous epidemiologic studies,
which have found unfavorable cardiometabolic risk profiles for
higher concentrations of choline and lower concentrations of
betaine across multiple populations (42–44).

These consistent associations across studies with components
of metabolic syndrome, along with insulin resistance in our
study, suggest a potential role of these compounds in diabetes.

Indeed, both dietary phosphatidylcholine intake and plasma
TMAO have been linked to significantly increased type 2 diabetes
risk (5, 45). There has also been support in animal models;
Gao et al. (11) showed that dietary supplementation of mice
with TMAO led to impaired glucose tolerance, alterations in
hepatic insulin signaling pathways, and promotion of adipose
tissue inflammation. In addition, insulin suppressed expression of
FMO3 in vitro, and knockdown of the enzyme in insulin-resistant
mice suppressed forkhead box O1 (FOXO1), a key transcription
factor involved in the regulation of insulin signaling (46). It is
also possible that associations between TMAO and diabetes are
driven in part by changes in the gut microbiome (47), as we found
several TMAO-associated genera to be related to HOMA-IR.

Interestingly, we did not find TMAO to be associated with
any other disease biomarker, even though a variety of studies
have linked TMAO with CVD outcomes (9, 48). However,
many of these studies were conducted in participants with other
diseases or patient populations undergoing medical procedures
such as hemodialysis and cardiac catheterization. Thus, these
associations may in part be influenced by these health outcomes
or other confounding factors. Although our participants were
older adults, they were relatively healthy with no serious health
conditions and were not on dialysis or undergoing insulin
treatment. Additional studies in healthier populations are needed
and may also show divergent results, as was seen in a prospective
cohort study of healthy adults, which did not find associations
for TMAO with either coronary artery calcium or carotid intima-
media thickness (49).

How TMAO is obtained (i.e., directly from food or derived
from precursors) could also affect these associations. For
example, fish is a major source of TMAO even though fish
consumption has been shown to reduce risk of CVD (50).
Given the higher fish consumption among Japanese Americans
and Native Hawaiians (23), dietary intake of fish in our study
was greater than in some previous studies conducted primarily
in white and black populations (23, 51). We found similar
associations when further adjusting for food sources of TMAO,
although this may not have fully captured the circulating
concentrations of other derived compounds that could affect
disease risk.

TABLE 4 Abundance of bacterial genera associated with plasma TMAO among 1653 participants in the Adiposity Phenotype Study1

Phylum; class; order; family; genus Prevalence β (SE) P value Q value

Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella 7 0.54 0.992 (0.152) <0.001 <0.001
Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Mitsuokella 0.23 1.444 (0.232) <0.001 <0.001
Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella 2 0.58 0.937 (0.168) <0.001 <0.001
Fusobacteria; Fusobacteriia; Fusobacteriales; Fusobacteriaceae; Fusobacterium 0.53 0.931 (0.189) <0.001 <0.001
Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Ruminococcaceae UCG-011 0.39 − 0.528 (0.120) <0.001 <0.001
Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Ruminococcaceae NK4A214 group 0.86 0.330 (0.083) <0.001 0.002
Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; uncultured 0.27 1.196 (0.353) 0.001 0.014
Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; [Ruminococcus] torques group 1.00 0.085 (0.026) 0.001 0.016
Proteobacteria; Deltaroteobacteria; Desulfovibrionales; Desulfovibrionaceae; Bilophila 0.60 0.237 (0.072) 0.001 0.016
Proteobacteria; Deltaroteobacteria; Desulfovibrionales; Desulfovibrionaceae; Desulfovibrio 0.26 0.890 (0.268) 0.001 0.016
Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; [Bacteroides] pectinophilus group 0.33 0.555 (0.174) 0.001 0.018
Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Eisenbergiella 0.69 0.346 (0.114) 0.002 0.028
Proteobacteria; Alpharoteobacteria; Rhodospirillales; uncultured; gut metagenome 0.56 0.455 (0.155) 0.003 0.037

1Parameters derived from the count model from hurdle regression with a negative binomial distribution or standard negative binomial regression,
adjusted for age, sex, race-ethnicity, physical activity, percentage body fat, laboratory batch, and total sample sequence count. All taxa with false discovery
rate–adjusted Q < 0.05 are included in the table. Prevalence indicates proportion of participants with each genus. TMAO, trimethylamine N-oxide.
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Because gut microbes are necessary for the conversion
of choline, carnitine, and betaine into TMA (13, 15), we
hypothesized that composition of the gut microbiome would be
associated with TMAO concentrations. We found that TMAO and
its precursors each explained ∼0.1% of overall fecal microbiome
variation, which closely mirrors the relative abundance of
bacteria estimated to harbor TMA-producing genes based on a
previous metagenomic analysis from the Human Microbiome
Project (52). Furthermore, the association may be influenced by
variation of other factors related to the human conversion of TMA
to TMAO as well as excretion rates of TMAO.

We found associations between TMAO and several bacterial
genera, including Desulfovibrio, in which the cut gene cluster
was first discovered (20). Prevotella were among the genera
that showed the strongest association. Baseline measures of 53
participants in a controlled feeding study showed that those
with an enterotype enriched with Prevotella had higher plasma
TMAO concentrations than those with an enterotype enriched
with Bacteroides (13). In addition, choline supplementation in
ApoE−/− mice increased concentrations of Prevotella (53). Three
genera from the family Lachnospiraceae were also positively
associated with TMAO in our study. Several Lachnospiraceae
possess cutC/D, especially those in Clostridium XlVa (52).
Lachnospiraceae was also more abundant among high-TMAO
producers in a crossover feeding trial of healthy young men (12).
None of the genera we identified are known to have cntA/B, which
may reflect the fact that the gene cluster is less prevalent in gut
bacteria (15, 52).

Archaea also play a role in determining TMAO concentrations.
Members of the Methanomassiliicoccales order can use TMA to
produce methane through the trimethylamine methyltransferase
(mttB) gene (22, 54). This has been shown experimentally, as
the strain Methanomassiliicoccus luminyensis B10 was able to
reduce TMA and H2 for methanogenesis (22). Although M.
smithii does not possess the mttB gene, it has been shown to
reduce plasma TMAO concentrations in mice (55). Our results
lend support to a role of M. smithii in TMAO formation, as we
found the methanogen to be inversely associated with TMAO.
Additional studies are needed to better understand how M. smithii
and other archaea affect TMAO production.

Our study has several strengths and limitations. First, we had
an ethnically diverse and relatively healthy study population,
whereas many of the TMAO studies to date have been limited
to white and/or black participants with metabolic disease or
undergoing various medical procedures. Second, we were also
able to assess associations of disease biomarkers not only with
TMAO, but also choline, carnitine, and betaine. Third, this is
one of few population-based studies of TMAO and the gut
microbiome, and is, to our knowledge, the largest to date. A
limitation of our study was the cross-sectional design, which
limited inference of causality between TMAO and its precursors
and disease risk biomarkers. As with all observational studies,
there is potential for residual confounding, although our well-
characterized study population allowed for adjustment of risk
factors in biomarker and microbiome analyses. We also used 16S
rRNA gene data, which did not allow us to directly examine
bacterial functional genes; however, several of the genera we
found to be associated with TMAO include species that possess
the cut genes, which suggests an important role for this gene
cluster.

In summary, our findings lend support to a possible role
of TMAO and its precursors, particularly choline, in car-
diometabolic risk, as well as associations between TMAO
and fecal microbiota. Longitudinal studies of TMAO and its
precursors in disease risk are needed, along with additional
population-based studies of TMAO and the gut microbiome.
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